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Abstract. This paper investigates the linkage model building for genetic
algorithms. By assuming a given quality of the linkage model, an ana-
lytical model of time to convergence is derived. Given the computational
cost of building the linkage model, an estimated total computational
time is obtained by using the derived time-to-convergence model. The
models are empirically verified. The results can be potentially used to
decide whether applying a linkage-identification technique is worthwhile
and give a guideline to speed up the linkage model building.

1 Introduction

Holland [1] suggested that operators learning linkage information to recombine
alleles might be necessary for genetic algorithm (GA) success. Many such meth-
ods [2] have been developed to solve the linkage problem. The linkage model
can be implicit (e.g. LLGA [3]) or explicit (e.g. LINC [4]), probabilistic (prob-
abilistic model building GAs [5], or estimation of distribution algorithms [6])
or deterministic (e.g. DSMGA [7]). Those methods have different strength in
identifying linkage and consume different computational time. Because some of
the linkage-identification methods are computationally expensive, recently there
is a trend of applying speedup techniques on those linkage-identification meth-
ods including parallelism [8]. Another possible speedup technique is the evalu-
ation relaxation scheme [9]. In a unified point of view, a linkage-identification
method with the evaluation relaxation technique applied can be considered as
another linkage-identification method which is more efficient and possibly less
accurate. With the same idea, a simple GA (sGA) can be thought as a GA with a
linkage-identification method which does not consume additional computations
and always reports tight linkages.

Two questions might frequently come into a GA researcher’s mind: (1) On
which classes of problems does a specific GA design have strength and weak-
ness, and (2) is a speedup technique worthwhile to use? Take the Bayesian op-
timization algorithm (BOA) as an example. BOA works well on problems with
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linkages; however, for problems where linkage is not important, like OneMax, a
sGA would perform better since building a Bayesian network is computation-
ally time-consuming [10]. A linkage-identification method with the evaluation
relaxation techniques is more efficient but possibly less accurate. The lower ac-
curacy might elongate the convergence time, and speeding up the model-building
process might result in a slower GA convergence. Although the above two ques-
tions seem loosely related, they boil down to the following more basic question:
Given two different model builders with different accuracies and different com-
putational costs, should one use a more accurate, but more computationally
expensive model builder or a less accurate, but less computationally expensive
model builder?

The purpose of this paper is to answer the above question, and by doing this,
the results lead us toward a better understanding of the relationship between
building linkage models and GA convergence. The paper first defines the errors
of a linkage model, and then time to convergence is derived for a given number
of errors of the linkage model. The time-to-convergence model is then used to
derive the total computational time. A number of experiments are done to verify
the models derived in the paper. Finally, discussions of the contributions and
possible future work conclude this paper.

2 Time to Convergence for Linkage Model Building

This section derive the time-to-convergence model of GA by assuming a given
linkage model quality. All derivations done by assuming an infinite population
size and prefect mixing by population-wise crossover. For simplicity, we further
assume that the problem contains a unique global optimum.

2.1 The Errors of a Linkage Model

The term “linkage” is widely used in GA field, but defining linkage is not an
easy task. In this paper, the linkage can be loosely defined as follows. If linkage
exists between two genes, recombination might result in lowly fit offspring with
high probability if those two genes are not transferred together from parents to
offspring. A group of highly linked genes forms a linkage group, or a building
block (BB) in [2].

A linkage model is a model telling which genes form linkage groups. For
instance, the boolean flags in LEGO [11], the genetic ordering in LLGA [12], the
clustering model in eCGA [13], and the DSM clustering in DSMDGA [7] are all
linkage models. Two different types of errors can happen when a linkage model
is adopted to describe the genetic linkage. One is that the linkage model links
those gene which are not linked in reality. The other is that the linkage model
does not link those gene which are linked in reality. The first type of error does
not disrupt correct BBs but they slow down BB mixing. Since perfect mixing
(in short, BBs are uniformly distributed over the population on each particular
position) is one of the presumptions of the time-to-convergence model used later
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in the paper, this paper only focuses on the second type of error and leaves the
first type of error as future work.

The quality of a linkage model can be quantified by the number of errors
it makes. For example, consider a problem with four BBs, where {BB1, BB2,
BB3, BB4}={{1,2,3}, {4,5,6} , {7,8,9}, {10,11,12}}, and a linkage model {BB′

1,
BB′

2 ,BB′
3, BB′

4, BB′
5}={{1,2}, {3,4,5,6}, {7,8}, {9,10,11}, {12}}. By ignoring

the first type of errors, the linkage model can be re-expressed as {{1,2}, {3},
{4,5,6}, {7,8}, {9}, {10,11}, {12}}. As a result, the linkage model produces 3
errors and only BB2 is correctly identified.

2.2 Building Block Disruptions

According to [2], effectively mixing BBs is critical for a GA success. In most
traditional GAs, BB mixing is done by performing crossover. However, if BBs are
not correctly identified, crossover will also disrupt BBs (addressed in Holland’s [1]
schema theory). This subsection derives the upper bound of the expected number
of BB disruptions given the number of errors of the linkage model.

Before derivations, it is convenient to define two terms, a correct BB and an
incorrect BB. If the genes in a BB have the same values as those genes at the
same locations of the globally optimal solution, the BB is called a correct BB;
otherwise, it is called an incorrect BB. A BB disruption occurs when a correct
BB becomes an incorrect BB after crossover.

By the assumption, after crossover is performed, a misidentified BB is recom-
bined by two portions which come from two different BBs. When one portion
comes from a correct BB and the other portion comes from an incorrect BB, a
BB disruption probably occurs. To be conservative, we assume that recombining
a portion of a correct BB with a portion of an incorrect BB always results in
an incorrect BB. That happens when the most competitive incorrect BB is ex-
actly the compliment of the correct BB. Likewise, we assume that recombining
incorrect BBs always produces incorrect BBs.

Assume that there is a proportion p of correct BBs in the current population.
For a randomly chosen BB, a BB disruption occurs when (1) it is misidentified,
(2) it is a correct BB, and (3) it is going to be recombined with an incorrect BB.
Therefore, the probability of a BB disruption occurrence is given by(

1 − (1 − 1
m

)e

)
p(1 − p), (1)

where m is the number of BBs in a chromosome. When the number of errors e
is much smaller than the number of BBs m, it is valid to assume that only one
errors occurs for each misidentified BB. The above equation can be approximated
as

e

m
p(1 − p). (2)

In a population of size N , there are total Nm BBs. The expected number of BB
disruptions is then Nep(1 − p).
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2.3 Time-to-Convergence Model

Mühlenbein and Schlierkamp-Voosen [14] gave the following time-to-convergence
model for OneMax problem by assuming a infinite population size and prefect
mixing.

tconv =
(π

2
− arcsin(2p0 − 1)

) √
l

I
, (3)

where p0 is the initial proportion of ones, I is selection intensity, and l is the
length of chromosome. The time-to-convergence model can be derived from the
following equation [14,15].

pt+1 − pt =
I√
l

√
pt(1 − pt), (4)

where pt is the proportion of ones at generation t.
Miller [16] extended the time-to-convergence model to problems with uni-

formly scaled BBs. If the linkage model successfully identifies every BB, by
treating correct BBs as 1’s and incorrect BBs as 0’s, the problem is then similar
to the OneMax problem. The only difference is that the growth of correct BBs
are slower. The reason is that a chromosome with more correct BBs does not
always have a higher fitness value. For example, {0” 0” 1} might have a lower
fitness value than {0’ 0’ 0’}, where 1 represents a correct BB, 0’ represents an
incorrect BB with a high fitness value, and 0” represents another incorrect BB
with a low fitness value. The growth of correct BBs is then modelled as follows.

pt+1 − pt =
I ′

√
m

√
pt(1 − pt), (5)

where I ′ ≤ I, and pt is the proportion of correct BBs at generation t.
When the linkage model has some errors, the growth of correct BBs is slowed

down. After selection, the growth of correct BBs is still governed by Equation 5,
pt,selected = pt + I′√

m

√
pt(1 − pt). The proportion of disrupted BBs is given by

e

m
pt,selected(1 − pt,selected). (6)

Hence, the proportion of correct BBs for the next generation is

pt+1 = pt,selected − e

m
pt,selected(1 − pt,selected). (7)

By approximating the BB disruption in Equation 6 as e
mpt(1 − pt) (the pro-

portion of disrupted BBs is calculated according to the proportion of correct
BBs before selection) and adopting p(1 − p) ≤ 1

2

√
p(1 − p) for 0 ≤ p ≤ 1, the

proportion of disrupted BBs can be approximated as:

e

2m

√
pt(1 − pt). (8)
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The proportion of correct BBs in the next generation is then given by

pt+1 − pt = (
I ′

√
m

− e

2m
)
√

pt(1 − pt). (9)

Following a similar procedure in [14] and [15], one can derive the time-to-
convergence model.

tconv =

(
π
2 − arcsin(2p0 − 1)

)
I′√
m

− e
2m

. (10)

The dimensionless model can be obtained as

tconv(e = 0)
tconv

= 1 − e

2I ′√m
. (11)

The above equation also suggests that when e ≥ 2I ′√m, BB disruptions are
severer than BB growths; the behavior of the GA is then like a random search
and difficult to converge. Therefore, defining the critical number of errors ecritial

as the largest number of BBs that a linkage model could misidentify while a
(m − 1)-BB convergence is still possible, the following relation between ecritial

and m can be expressed as

ecritial = 2I ′√m. (12)

Since I ′ is only loosely related to the problem, the key idea of the above equation
is that ecritial = O(

√
m).

3 Overall Computational Time

This section models the overall computational time using the time-to-
convergence model in the previous section. The overall computational time is
then used to derive an optimal decision of which linkage model should be used.
A similar methods of modelling in this section can be found in [9].

Assuming the GA operators consume α computational time each generation,
if a linkage model on average misidentifies e BBs and consumes β computational
time, the overall computation time is then

T = tconv(e)(α + β). (13)

Suppose we have two linkage-identification methods, M1 and M2, which
misidentifies e1 and e2 BBs, and consumes α1 and α2 computational time, re-
spectively. The ratio of the overall computational time of GAs which adopt those
two linkage-identification methods is given by

TM1

TM2

=
2I ′√m − e2

2I ′√m − e1
· α + β1

α + β2
. (14)
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If the ratio is smaller than 1, method M1 should be used, and vice versa.
The above equation is difficult to use in practice mainly because the the

number of BBs that a linkage model misidentifies is not easy to estimate. Nev-
ertheless, the equation gives some insights and mathematical foundation to the
following observations.

1. When the fitness function evaluation is computationally expensive (α >> β),
the first term ( 2I′√m−e2

2I′√m−e1
) dominates the decision, and a time-consuming,

but more accurate linkage-identification method is favored.

2. On the contrary, when the fitness function evaluation is relatively com-
putationally inexpensive (α << β), the second term (α+β1

α+β2
) dominates

the decision, and a less accurate, but computational efficient linkage-
identification method is favored.

When errors are few (e1, e2 <<
√

m) and the computational cost of the link-
age model builder is relatively cheap compared to the GA operators (β1, β2 <<
α), the above equation can be approximately simplified as

TM1

TM2

= 1 +
e1 − e2

2I ′√m
+

β1 − β2

α
. (15)

The above equation suggests the following definitions: The quality of a linkage
model is Q = 1− e

2I′√m
and the relative cost of a linkage model is c = β

α . For any
linkage model with Q < 0 or e > 2I ′√m, the GA is difficult to converge. Given
two linkage-identification methods M1 and M2 with qualities Q1, Q2 and their
relative costs c1, c2 respectively, by defining �Q = Q1 − Q2 and �c = c1 − c2,
the decision ratio becomes

TM1

TM2

= 1 + (�c − �Q). (16)

Therefore, if �c < �Q, M1 is better; otherwise, M2 is better. Consider M2 as
an evaluation relaxation version of M1: M2 is more computationally inexpensive
but less accurate than M1 (�c > 0 and �Q > 0). The evaluation relaxation is
worthwhile only when �c > �Q, or in other words, when the save of relative
cost is greater than the loss of quality.

4 Empirical Results

This section presents the experiments that empirically verify our models. This
section first describes the design of the experiments, and then it shows the em-
pirical results followed by discussions.
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4.1 Experiment Design

The test function should be carefully chosen to fulfill the worst-case analysis:
If a BB is misidentified, most likely it will be disrupted by crossover. Based on
the reason, a MaxTrap function is used (for more details and analysis of a trap
function, see [17]). A correct BB in a 5-bit trap is 11111, and its most competing
BB is 00000. If the BB is misidentified, any crossover would result in incorrect
BBs with some ones and zeros in them. By the nature of the trap function, those
incorrect BBs would then tend to become the most competing BB, 00000.

In addition, two assumptions used in the time-to-convergence model deriva-
tions should be satisfied: (1) Infinite population-sizing and (2) perfect mixing.
In implementation, a large-enough population size is used and uniform crossover
is performed to ensure high mixing rate. In particular, a pair-wise BB-specific
uniform crossover is used, the main difference between a population-wise BB-
specific uniform crossover and the pair-wise BB-specific uniform crossover is that
the amount of BB disruptions predicted in Equation 6 is reduced by a factor of
2, because the swap at any cross-site only is performed with a probability 0.5.

A 5 × 50 and a 5 × 100 MaxTrap are tested. The 5-bit trap is defined as:

trap5(u) =
{ 4−u

5 , u = 0, 1, 2, 3, 4
1, u = 5 , (17)

where u denotes the number of ones in the input 5-bit block.
A linkage model without any error (e = 0) gives the following BB information:

{{1, 2, 3, 4, 5},{6, 7, 8, 9, 10},· · · }. For e > 0, first, e BBs are randomly selected,
their genes are randomly shuffled, and then those selected BBs are randomly
split into two parts. For example, a randomly selection BB {6, 7, 8, 9, 10}
might be shuffled as {6, 9, 10, 7, 8} and then split into {6, 9} and {10, 7, 8}.
The processed BB information is then used to perform a pair-wise BB-specific
uniform crossover. Tournament selection with tournament size s = 2 is used.
According to Blickle and Thiele [18], the selection intensity I � 0.5763. Assuming
I ′ is a constant, I ′ can be then estimated by comparing the estimation of time
to convergence given by Equation 10 and the empirical time to convergence for
e = 0. As a result, I ′ � 0.752I � 0.4334. All experiments are averaged over 100
independent runs.

To approximate the asymptotic behavior of the time-to-convergence model,
four times of the population size estimated by the gambler’s ruin model [12] are
used. For example, a population size of 1539 should supply enough BBs for GAs
to process the 5 × 100 MaxTrap function. In the experiments, the population
size is set to 6156.

4.2 Results and Discussions

The relationship between the number of BB disruptions and the correct BB
proportion for different linkage model errors for the 5×100 MaxTrap is presented
in Figure 1. The figure shows that the derived model (Equation 6) is more
accurate when e is small. The reason is that Equation 6 is an overestimate which
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ignores the possibility that correct BBs might be produced from the combination
of two incorrect BBs. When e is larger, the crossover of 11111 and 00000 gives
more incorrect BBs with some ones and zeros in them. The recombination of
those BBs then has a higher probability to reproduce the correct BB, 11111.
Note that the model indeed bounds the empirical data.
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Fig. 1. Numbers of BB disruptions for the 5×100 MaxTrap. The BB disruption is severe
in the middle of the GA run, and mild when the GA is merely or nearly converged.

It is easily seen that BB disruption is severe when roughly half of the BBs in
the population are correct; Only few BB disruptions occur when the proportion
of correct BBs is close to either 0 or 1. The observation suggests the following
possible adaptive speedup scheme. Instead of recalculating the linkage model
every generation, the linkage model is only updated every several generations at
the beginning and the end of the GA run. Of course, it is non-trivial to estimate
the degree of convergence of the GA for any given generation, and that leaves a
room for the future work.

The time to convergence for different linkage model error e is shown in Fig-
ures 2 and 3. The convergence condition is that on average, there are (m − 1)
correct BBs in each individual, where m is the number of BBs of the problem.
As expected, since the number of BB disruptions is overestimated, the predicted
time to convergence is also longer than the actual number of generations that
the GA needs to converge. For a smaller e (compared with

√
m), the model

predicts better. The empirical data agree better with the model for the 5 × 100
MaxTrap than the the 5 × 50 one, because for the same value of error, the error
is relatively smaller compared to

√
m for a larger m.

Finally, Equation 12 predicts that the GA could hardly converge for e >
2I ′√m. In the experiments, because a pair-wise crossover is used and the swap
is performed with a probability 0.5 on every cross-site, the number of BB dis-



Toward an Understanding of the Quality and Efficiency of Model Building 375

0 2 4 6 8
0

50

100

150

200

Linkage Model Error (e)

T
im

e 
to

 C
on

ve
rg

en
ce

 (
t co

nv
)

model 5x50
experiments 5x50

Fig. 2. Time to convergence for the 5x50 MaxTrap. The model overestimates the time
to convergence. For a relatively smaller e, the model predicts better.
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Fig. 3. Time-to-convergence for the 5x100 MaxTrap. The model predicts better than
that for 5x50 because then number of errors e is relatively smaller compared with

√
m.

ruptions is only half as modelled in section 2, and hence ecritial = 4I ′√m. If the
linkage model contains more errors than ecritial, BB disruption rate is higher
than BB growth rate, and the GA is difficult to converge. The critical number of
errors versus the number of BBs is plotted in Figure 4. As shown in the figure,
the results basically agree with the model: The critical number of error ecritical

grows proportionally to the square root of the number of BBs (
√

m). Since the
number of BB disruptions is overestimated, the estimation of ecritical should
be a underestimation. However, due to the finite population size, the empirical
ecritical is smaller than predicted.
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Fig. 4. The critical number of errors versus the number of BBs. Roughly ecritical =
O(

√
m).

5 Conclusions and Future Work

In this paper, by assuming a infinite population size and perfect mixing, the
time to convergence was derived for a given number of misidentified BB of the
linkage model. The derivations gave several insights about the model-building
for GAs:

1. The BB disruptions is severe when roughly half of the BBs are converged.
The BB disruptions are mild when the GA is merely or fully converged.

2. Speedup might be achieved by applying evaluation relaxation techniques on
the model-building techniques at the beginning and at the end of the GA run.

3. The critical number of errors (the largest number of BBs that a link-
age model could misidentify while a (m − 1)-BB convergence is still
possible) grows proportional to the square root of the number of BBs
(ecritical = O(

√
m)).

As future work, we would like to integrate the the first type of errors discussed
in section 2.1 into our models. Also, we are investigating how to estimate the
number of errors of a linkage model. The number of errors might be estimated
by observing the convergence behavior of the GA. If that is doable, we could
perform the linkage-identification algorithm only when the number of errors
exceeds some predefined threshold. By doing that, a speedup is obtained while
the quality of solution is maintained.
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